Appendix C

Space Vector, Positive and Negative Sequence
Vectors

This appendix relates to Chapter 3, §3.4.6.
A space vector (or a complex vector) for a three-phase quantity denoxt) lsychosen
such that the projections of the vector in the three direcfipn$20° and 120° give the
three-phase instantaneous variabtg&), x, (t) and x.. (t) . The space vector can be
calculated from the three-phase instantaneous quantities as follows:
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The real and imaginary part a{t) are usually calledr and 5 components of the space
vector:

X(t) = Xgp (1) = X (1) + X5 (1)

It's possible to define the three-phase system by symmetrical components, i.e., positive,
negative and zero sequence quantities:
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The space vector of above equation is obtained through applying operator T:
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The positive and negative vectors can be obtained as follows: If we assume that within a
small time period 7 thevaluesof X, ¢, X, ¢, are unchanged, we have:

X(t) = Xp (1) + Xp (1)
(t-7) =71 X (1) + €1 X (1)
Solving the above equation system yields:
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The above relationships can further be smplified if we set wr = Torr= T
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